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bstract

In this study, we evaluated if the application of multivariate analysis on the data obtained from two-dimensional protein maps could mean
n improvement in the search for protein markers. First, we performed a classical proteomic study of the differential expression of serum N-
lycoproteins in colorectal cancer patients. Then, applying principal component analysis (PCA) we assessed the utility of the 2-D protein pattern
nd certain subsets of spots as a tool to distinguish control and case samples, and tested the accuracy of the classification model by linear discriminant

nalysis (LDA). On the other hand we looked for altered spots by univariate statistics and then analysed them as a cluster by PCA and LDA. We
ound that those proteins combined presented a theoretical sensitivity and specificity of 100%. Finally, the spots with known protein identity were
nalysed by multivariate methods, finding a subgroup that behaved as the most obvious candidates for further validation trials.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Nowadays, the utility of proteomics in the search for new
umour markers is unquestionable and, as more analytical tools
re described in the proteomics area, its weight is increasing
n the clinical field. On the one hand, every new technique is
bviously welcome to overcome the lack of clinically useful
umour markers. Precisely, proteomic techniques are especially
uitable for developing blind searches without previous ideas,
nd therefore they allow the detection of alterations in proteins
hat before were not thought to be related to carcinogenesis. On
he other hand, it is becoming increasingly evident that it will
ot be possible to find a single biomarker for a given pathology

ulfilling all the requirements of a useful clinical marker. Any
arker will always show a lack of sensitivity due to the simple

act that some tumours will be too small to release detectable

� This paper is part of a special volume entitled “Analytical Tools for Pro-
eomics”, guest edited by Erich Heftmann.
∗ Corresponding author. Tel.: +34 986 813841; fax: +34 986 812556.
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mounts of protein. Furthermore, other diseases than cancer will
ead to the appearance of various markers in blood (i.e. liver
isease, infections, etc.) and therefore specificity will never be
00% [1,2].

Hence, proteomics would be a suitable tool to aid in the search
or a panel of candidate biomarkers. In proteomic studies of
ifferential expression in serum, a large number of protein can-
idates for biomarkers can be found; among them, there are
oth serum proteins that are differentially expressed or modi-
ed in cancer patients, and proteins that are secreted by tumour
ells into the circulation or intracellular tumour proteins that
re released when tumour cells die, which would increase the
pecificity of a panel of biomarkers. Besides, a proper panel
ould also include proteins altered in processes concomitant to
umour development (as inflammation and immune response)
ven if they are not directly related to carcinogenesis. These
roteins would increase the sensitivity of the test [3].
The value of an altered molecule as a tumour marker has to be
alidated a posteriori by other specific techniques. This assess-
ent requires a simple method that could be implemented in

he clinical routine (as ELISA assays), but it also means to test

mailto:anarp@uvigo.es
dx.doi.org/10.1016/j.jchromb.2006.09.021
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large number of samples that permit the pertinent statistical
nalyses (as ROC or survival curves) [4]. On the other hand,
o check the specificity of a marker for diagnosis of a certain
isease, it is necessary to study samples from related diseases.
herefore, it is unthinkable to perform all the required tests with
ach one of the proteins that could be found altered by pro-
eomic techniques. In fact, there is some dismay about the results
ventually applicable in health care with regard to proteomics
3]. From the many studies of differential expression between
athological and normal states, only a few ulterior works have
onfirmed the alterations described, and practically none have
orroborated the clinical value of the potential markers. Thence,
t would be greatly helpful to find methods to refine the conclu-
ions of proteomics studies and select the altered proteins that
re more prone to display a real utility.

Multivariate analyses have been proposed before to aid in the
valuation of proteomic experiments. Among them, there are
ethods for dimension reduction as principal component analy-

is (PCA) or partial least squares (PLS); methods for classifica-
ion as linear discriminant analysis (LDA); clustering methods as
ierarchical cluster analysis; and multivariate analyses of vari-
nce [5]. Besides, pattern recognition techniques and machine
earning methods could also help in complex proteomic analyses
5].

PCA is a multivariate statistical method that allows the
epresentation of the original dataset in a new reference system
ormed by new variables called factors or principal components
PCs). When these PCs effectively account for the variability
f the different sample populations analysed, it is possible
o cluster them into the correct groups. The LDA is another
ype of multivariate statistical method that builds one or more
unctions (called ‘discriminant’, ‘diagnostic’ or ‘classification’
unctions) and uses them to characterise the groups, assigning
r classifying the cases into them and measuring the degree of
uccess of the classification model.

Some types of multivariate analyses have been already
pplied to proteomics. As an example, de Noo et al. [6] recently
sed a classical LDA to validate MALDI-TOF serum profiles
n the detection of colorectal cancer (CRC). Regarding 2-DE,
ovarova et al. [7] applied 2-DE followed by PCA to charac-

erise changes in the proteome of a leukemia cell line after a
reatment, finding that the spot pattern after 6 h of treatment was
imilar to that of control cells, whereas longer times of exposure
roduced a different protein complement. These authors also
ttempted to find the proteins that contributed the most to the
ignificant PCs, although they could just ascertain the ones that
ere significant by univariate analysis. Roblick et al. [8] applied
CA after 2-D of different tissues regarding the progression of
RC (normal tissue, polyps and adenomas, tumour tissues and
etastasis) and showed that the proteome of benign lesions was

imilar to that of the normal tissues and differed from malignant
esions. Recently, Verhoeckx et al. [9] also tried the combination
f the DIGE technology with PCA as an explorative data analy-

is tool, using the test to corroborate the separation of different
roups of samples on the basis of their proteome, but eventually
tudying differences in protein expression levels by a univariate
ethod. Another example is the report of Jia et al. [10], who
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roposed an approach similar to the one described in this work,
sing PCA to plot the samples although further analyses required
omputational knowledge to perform rotation tests and other
alculations [11]. Karp et al. [5] recently reported an elegant
ombination of mean centering scaling with PCA to demon-
trate clustering of the samples and absence of outliers, followed
y PLS-DA to classify the samples through a regression model,
efined by an iterative process. Marengo et al. [12] presented a
reliminary approach to the discrimination of 2D-PAGE maps
alled 3-way PCA that included information regarding both the
ntensity and the position of the spots, and involved transforma-
ion of the data through a maximum scaling technique and other
efinements regarding the conventional PCA. In relation to the
ifferential analysis of spot position, in a previous work we have
roposed the application of a multivariate method called the rel-
tive warp analysis, which is commonly used in the studies based
n geometric-morphometrics [13]. On the other hand, Marengo
t al. have also developed methods based on fuzzy logic [14]
nd tested tools as the soft-independent model of class analogy
15].

In this work, we performed a classical proteomics compar-
son of serum N-glycoproteins from CRC patients and healthy
onors. Then, we applied different approaches to analyse the
ata obtained from the 2-D comparison. First, we used a typical
nivariate test to look for differences of expression of individ-
al proteins. Then, we used the multivariate methods PCA and
DA to find whether the global protein expression or a certain
attern would allow the differentiation of control and case 2-D
aps. Furthermore, we took advantage of the combination of

oth univariate and multivariate techniques in order to aid in the
election of the proteins that could be grouped to discriminate the
isease studied. Finally, we tried to select the minimum group of
nown proteins which alteration allows the separation of sam-
les from patients and healthy individuals, proteins that could
e more easily and effectively set up in the clinical routine as
panel of markers. All these different approaches demonstrate

he potential of exploring multivariate analyses to complement
he conventional tools used in the search of biomarkers through
roteomic studies.

. Experimental

.1. Chemicals and reagents

Con A-Sepharose 4B was purchased from Sigma–Aldrich
hemie (Steinheim, Germany). Analytical grade of sodium
i-hydrogen phosphate2-hydrate, di-sodium hydrogen phos-
hate anhydrous (PANREAC Quimica, Barcelona, Spain), and
ethyl-�-d-mannopyranoside (Sigma, Steinheim, Germany)
ere used as reagents.
ReadyStripTM IPG Strips (4% T; 3% C) were purchased

rom Bio-Rad (Hercules, California, USA). Lysis buffer was
repared with 7 M urea, 2 M thiourea and 4% (w/v) 3-[(3-chola-

idopropyl)dimethylamonio]-1-propanesulfonate (CHAPS).
ehydration buffer contained 7 M urea, 2 M thiourea, 4% (w/v)
HAPS, 0.3% (w/v) dithiothreitol (DTT), and 0.5% (v/v)
io-Lytes 3/10 ampholytes. SDS-PAGE equilibration buffer
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as prepared with 6 M urea, 50 mM Tris pH 8.8, 2% (w/v)
DS, and 30% (v/v) glycerol, and afterwards 1% (w/v) DTT,
nd 2.5% (w/v) iodoacetamide (IAA) were added. Thiourea
as purchased from Sigma (Steinheim, Germany) and IAA was
btained from Merck (Schuchardt, Germany). Silver nitrate was
btained from Sigma (Steinheim, Germany) and the remaining
hemicals were purchased from Bio-Rad (Hercules, California,
SA).

.2. Equipment

Chromatographic separation was carried out on an Econo
olumn from Bio-Rad (Hercules, California, USA). Fractions
ere collected with a Microfraction Collector 203 from Gilson

Middleton, Wisconsin, USA), and optical density was mea-
ured in an UVIKON Spectrophotometre 930 from Kontron
nstruments (Milan, Italia). Samples were lyophilised in a Christ
lpha 2–4 freeze drier and resuspended in a Sanyo Gallenkamp
rbital shaker incubator, both purchased from B. Braun Biotech
Leicester, UK). The Protean IEF Cell for isoelectric focusing
nd Protean II xi Cell for electrophoresis, the power supply
ower PAC 1000, the calibrated densitometre GS-800, and the
DQuest software package were all purchased from Bio-Rad
Hercules, California, USA). MS was performed in a M@LDI-
TTM with the MassLynx software (Micromass-Waters, Saint-
uentin, France). MASCOT Daemon search engine was from
atrix Science (London, UK).

.3. Sample preparation

Blood samples were obtained by venipuncture from five
atients operated on for CRC at Complejo Hospitalario Univer-
itario de Vigo (Spain). Blood samples of the control group (five
ealthy and habitual blood donors) were provided by the Gali-
ian Transfusion Center. Drawn blood was allowed to coagulate
t room temperature and centrifuged at 2000 × g for 15 min.
era were stored at −85 ◦C. All procedures involving human
amples were performed according to the clinical ethical prac-
ices of the Spanish Government and followed the tenets of the
elsinki Declaration. Informed consent was obtained from each

ubject’s guardian, and anonymity was warranted tracing the
atients through their clinical history number.

.4. Concanavalin A-Sepharose affinity chromatography

The chromatographic method was performed as published
lsewhere [16]. Briefly, 1 mL of filtered serum was applied to
Concanavalin A-Sepharose (Con A) column (0.8 cm × 7 cm),

quilibrated in 10 mM sodium/disodium phosphate buffer pH
.0. Flow was stated at 0.3 mL/min. The column was first
ashed with 30 mL of equilibrating buffer, releasing the flow-

hrough fraction enriched in non-glycosylated proteins and
-glycoproteins. The fraction of interest, constituted mainly

y N-glycosylated proteins, was selectively eluted with 0.5 M
ethyl-�-d-mannopyranoside. Optical density (OD) at 280 nm
as measured along the chromatographic process. Chromato-
raphic fractions were dialysed against milliQ water at 4 ◦C

t

b
m
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vernight, frozen and lyophilised, and then stored at −85 ◦C
ntil used.

.5. Two-dimensional electrophoresis

The detailed procedure and its reproducibility have been
escribed before [16]. Briefly, the lyophilised eluate correspond-
ng to the N-glycoprotein fraction was solubilised by suspension
n lysis buffer, and protein concentration was measured accord-
ng to the modified method of Bradford [17]. Then, 150 �g of
rotein were mixed with rehydration buffer and separated by iso-
lectric focusing (IEF) in 17 cm, pH 4–7, linear ReadyStripTM

PG Strips (4% T; 3% C) in the Protean IEF Cell focusing tray.
fter incubation with DTT and IAA equilibration buffers, the

PG gel was transferred onto a 9–16% gradient polyacrylamide
el (30% T; 2.6% C) and SDS-PAGE was performed in a Protean
I xi Cell. Gels were stained with ammoniacal silver (modified
rom [18]).

.6. Computer analysis of electrophoretic patterns

Gels were digitised with the GS-800 calibrated densitome-
re and protein patterns were compared using the PDQuest
.1.1 software package. Protein spots were detected by the soft-
are based on the spot parameters chosen by the user through

election of the biggest, smallest and least intense spot. After
ubtraction of background, the resulting filtered images were
dited to correct inaccuracies (smeared, streaked and overlapped
pots were manually cancelled for ulterior comparisons). The
ntensity levels of the spots were normalised by expressing the
ntensity of each spot in a gel as a proportion of the total protein
ntensity detected for the entire gel (relative volume), in order
o correct for differences in protein loading and gel staining
19].

For comparison, gels belonging to control and patient sam-
les were matched independently in two sets, and a representa-
ive standard gel was obtained from each comparison. Then,
hese analyses within groups (control group; patient group)
ere matched between groups (control group standard ver-

us patient group standard). Only spots that were consistently
ound in all the samples analysed (matched in the 10 indi-
iduals) were selected for further statistical comparisons. This
election procedure was applied to avoid null values in the
ataset.

.7. Data evaluation by univariate and multivariate
tatistical analyses

Relative volumes of the spots matched between control and
atient samples were imported into the SPSS software package
release 11.5). For univariate analyses, differences in the rela-
ive levels of each spot were assessed with the non-parametric

ann–Whitney U-test. P values ≤0.05 were considered statis-

ically significant.

Multivariate analyses were performed on datasets constituted
y the relative levels of all the spots that were consistently
atched between the 10 individuals analysed, in order to avoid
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he replacement of null values by inference. PCA is based on
he variability of all the information contained in the complete
ataset. This method calculates the eigenvalues and eigenvec-
ors of the correlation matrix generated from the original matrix
f ten rows (gels) and as many columns as spots considered in
ach analysis. Each of the PCs is calculated by the software so
s to explain the maximum amount of variance contained in the
riginal dataset and corresponds to a linear combination of the
riginal variables (i.e. the relative volume of each spot in this
tudy). Moreover, the PCs are defined as orthogonal to each other
nd therefore allow a more effective representation of the sys-
em than the original variables. The relevant PCs obtained (those
ith eigenvalue >1) were considered statistically significant if
≤ 0.05 by the Mann–Whitney U-test.
The LDA was performed in order to test the utility of a

pot pattern to correctly predict the classification of the sam-
les in their original groups. The test was used to build one or
ore discriminant functions based on the linear combination of

he predictive variables that performed the better discrimination
etween the two groups considered. Then, the actual and the pre-
icted membership were compared, and the degree of success of
he classification model was measured. The accuracy of the clas-
ification was assessed through leave-one-out cross-validation,
emoving each individual in turn from the dataset, recalibrating

he discriminant rule and predicting the group for the leftover
ata. This allowed the correction for over-estimates, so when
he percentage of correct classification was much lower for the
ross-validated samples, the model was discarded.

p
i
T
s

ig. 1. Workflow of the analyses performed with the data obtained after a 2-DE expe
matogr. B 849 (2007) 251–260

.8. Mass spectrometric protein identification

Individual spots found altered in 2-D gels were identified
y MS as described elsewhere [16]. Briefly, spots were excised
rom Coomassie-stained gels, and destained with 50 mM ammo-
ium bicarbonate and 50% (v/v) ACN. Then, gel pieces were
ried and digested with 10 �g/mL trypsin in 25 mM ammonium
icarbonate at 37 ◦C overnight. Peptides were eluted with 5%
v/v) TFA and 75% (v/v) ACN. Finally, samples were mixed
ith an �-cyano-4-hydroxycinnamic acid matrix and analysed
n a M@LDI-HT. Data processing was performed with MassL-
nx and peptide fingerprints were searched against nrNCBI and
wissProt databases with the MASCOT Daemon search engine.

. Results and discussion

In this work, we have applied different statistical approaches
o analyse the results of a conventional 2-D experiment compar-
ng two sample conditions. Fig. 1 shows the procedure followed
n this study.

.1. Comparison of two-dimensional protein patterns

Serum samples from five healthy donors and five CRC

atients were processed through Con A chromatography [16]
n order to obtain a serum fraction enriched in N-glycoproteins.
hen, these fractions were separated by 2D-PAGE and silver-
tained. Images of the 2-D maps were acquired and analysed

riment. Bubbles show the section of ‘Results’ where the approach is described.
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ith the PDQuest software. First, maps obtained from the con-
rol group were compared in a first-level matchset and a standard
mage was generated with all the spots shared by the five control
amples. Likewise, maps from the patient group were com-
ared and used to build a standard patient map. After removing
ackground and noise signals (mainly streaks and areas of over-
apping), we could detect 870 common spots in control samples
hereas samples from patients showed a lower average, 675

hared spots, due to higher noise. After the denominated high-
evel matchset, consisting in pair alignment between control
nd patient standard maps, 363 spots were matched through the
hole set of samples. In order to establish a semi-quantitative

omparison, the intensity of each spot in a gel was normalised
n relation to the total density detected in the gel, obtaining the
elative volume, which is the most representative measure of the
pot quantity considering the gel stain. Relative volumes from
he 363 matched spots in the 10 gels were exported to the SPSS
rogramme for statistical comparison.

.2. Univariate analysis of the complete dataset

Following the traditional univariate approach employed with
-D data [14], differences in spot relative volumes between con-
rol and patient samples were assessed with the non-parametric

ann–Whitney U-test. Considering a 95%-confidence level,
e found 28 spots that were significantly altered (Fig. 2).
ll these spots were regarded as potential biomarkers and
herefore they were excised and submitted to MS identifi-
ation. Eventually, 13 out of the 28 spots were associated
ith significant hits (see identities in Table 1 and MS data

n supplementary Table S1), remaining a 54% of the altered

ig. 2. Virtual standard map for the comparison of serum N-glycoproteins from
ealthy individuals and CRC patients. The spots found significantly altered
y univariate analysis are shown in boxes if up-regulated or circled if down-
egulated in CRC patients.
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pots unidentified due to insufficient amount of peptides or low
ignal intensity during MS, and non-significant hits. Among
he spots identified we found clusterin, haptoglobin, and �-2-
lycoprotein I, which had also been detected in a previous study
16].

.3. Multivariate analysis of the complete dataset

After the conventional univariate analysis, we considered of
nterest to test the role of the whole protein pattern, since a num-
er of proteins that would be contributing to the pathological
tate could not have a significant alteration by themselves, but
aken together could help more effectively than single proteins in
he detection of the disease [3]. Multivariate data handling has
een suggested before to have important utility in proteomic
xperiments, since they are usually characterised by a large
umber of variables (as spots in 2-D maps or mass-to-charge
eaks in MS) and a lower number of observations (samples),
nd these types of datasets are most efficiently analysed by mul-
ivariate methods [5]. As other authors have stated, applying
nivariate tests to proteomic datasets increases the likelihood of
alse-positive results and does not permit the detection of trends
5,20,21]. Thus, we submitted a complex dataset, comprehend-
ng the relative volumes of the 363 valid spots matched through
ll the gels, to two multivariate analyses.

First, we applied a data reduction approach by means of the
actorial analysis called PCA. Out of the potential 363 compo-
ents extracted, the first nine PCs accounted for a 100% of the
iological variability contained in the data with a low individual
ontribution (Table 2). When these PCs were tested for differ-
nces by the Mann–Whitney U-test, we found that only PC2 was
ignificant with >99% confidence (P = 0.006). As it can be seen
n Fig. 3A, PC2 allowed the effective separation of the samples
n their original groups. This application of PCA had been suc-
essfully tested before by other authors as Kovarova et al. [7],
oblick et al. [8] or Verhoeckx et al. [9].

On the other hand, the second approach employed was the
DA. When the whole dataset was tested, we found a discrimi-
ant function for the control and patient groups that accounted
or the total (100%) variability of the data, setting a punctuation
or each sample that classified it in the original group with a con-
dence level higher than 99% (P = 0.008). As an example, the
lassification table shown in the output of the test is reproduced
s Table 3. Therefore, in our work the 2-D protein pattern formed
y the 363 spots matched through all the gels could be employed
o classify the individuals by LDA, behaving as a diagnostic tool
imilar to that proposed by Karp et al. [5].

However, from Table 2 it is obvious that employing the 363
ariables does not yield the best classification due to an excess
f information in the explanation of the total variability (nine
Cs for 100% variance) and a low individual contribution (i.e.
ercentage of variance explained) of each PC. Therefore, though
he whole dataset allows a separation of the groups and could

e used for diagnostic purposes, it seems reasonable to look for
simplified set of more relevant proteins to further improve the

eparation of the samples in order to find a panel of disease
arkers.
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Table 1
Spots significantly altered in patients with CRC regarding healthy subjects

Spot Controls relative volume
(mean ± SD)

Patients relative volume
(mean ± SD)

P value Fold change pI Mr (kDa) Identity Accession no.

1 0.0539 ± 0.039 0.0080 ± 0.011 0.036 −6.78 4.9 38.7 Clusterin (CLU) P10909
2 0.1027 ± 0.090 0.0150 ± 0.033 0.036 −6.85 4.8 62.0 – –
3 0.2156 ± 0.126 0.0166 ± 0.037 0.016 −13.02 5.0 29.3 – –
4 0.0353 ± 0.028 0.0025 ± 0.006 0.032 −13.91 5.0 37.4 Clusterin (CLU) P10909
5 0.1385 ± 0.310 0.7294 ± 0.373 0.028 +5.27 5.0 46.0 Haptoglobin (HPT) P00738
6 0.0256 ± 0.016 0.0043 ± 0.007 0.028 −5.92 5.1 38.1 Clusterin (CLU) P10909
7 0.0288 ± 0.016 0.0001 ± 0.000 0.009 −205.86 5.1 36.1 Clusterin (CLU) P10909
8 0.0257 ± 0.022 0.0049 ± 0.007 0.028 −5.24 5.1 73.2 – –
9 0.0260 ± 0.015 0.0043 ± 0.008 0.028 −6.05 5.1 93.8 – –

10 0.0408 ± 0.042 0.0013 ± 0.003 0.036 −30.42 5.1 94.9 – –
11 0.0277 ± 0.024 0.0025 ± 0.005 0.021 −11.24 5.1 93.9 – –
12 0.3245 ± 0.420 1.0915 ± 0.661 0.047 +3.36 5.3 43.5 Haptoglobin (HPT) P00738
13 0.0742 ± 0.048 0.0226 ± 0.031 0.036 −3.28 5.2 71.1 – –
14 0.0249 ± 0.025 0.0018 ± 0.004 0.036 −13.81 5.2 92.8 – –
15 0.0545 ± 0.048 0.0042 ± 0.009 0.028 −12.91 5.3 93.0 – –
16 0.0089 ± 0.011 0.0369 ± 0.024 0.044 +4.16 5.3 82.3 – –
17 0.3214 ± 0.213 0.0223 ± 0.050 0.016 −14.44 5.4 16.8 Haptoglobin (HPT) P00738
18 0.0296 ± 0.018 0.0740 ± 0.026 0.047 +2.50 5.5 27.2 Immunoglobulin,

light chain (IGLC)
P99007

19 0.4289 ± 0.178 0.1179 ± 0.162 0.028 −3.64 5.7 17.1 Haptoglobin (HPT) P00738
20 0.0693 ± 0.036 0.0139 ± 0.020 0.028 −4.99 5.6 54.9 Complement factor

I (CFAI)
P05156

21 0.0837 ± 0.046 0.0014 ± 0.003 0.016 −58.15 6.2 17.1 Haptoglobin (HPT) P00738
22 0.0285 ± 0.025 0.0677 ± 0.025 0.047 +2.37 6.1 58.0 – –
23 0.0802 ± 0.053 0.1617 ± 0.034 0.028 +2.02 6.3 56.9 Immunoglobulin,

heavy chain gamma
(IGHG)

P99006

24 0.0781 ± 0.167 0.3302 ± 0.085 0.047 +4.23 6.3 56.9 – –
25 0.1897 ± 0.059 0.0103 ± 0.014 0.009 −18.45 6.4 59.5 �-2-Glycoprotein I P02749
26 0.0278 ± 0.021 0.0037 ± 0.008 0.028 −7.44 6.7 63.9 – –
27 0.0152 ± 0.034 0.0674 ± 0.043 0.028 +4.43 6.5 87.2 – –
28 0.0483 ± 0.090 0.1942 ± 0.119 0.028 +4.02 6.5 115.7 – –

For each spot, it is shown the average relative volume, statistical significance, fold variation, experimental parameters, and identity found by MS.
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D: standard deviation; fold change is given in positive for relative volumes i
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.4. Selection of the spots with highest contributions to the

iscrimination of different samples

When the aim of a 2-D study is to find a protein pattern
hat would discriminate different samples, it is desirable that the

able 2
rincipal components (PCs) calculated from the 363 spots matched between
ontrol and patient samples

omponent Eigenvalues Significance
(P < 0.05)

Total % of variance Cumulative %

C1 118.096 32.533 32.533 0.889
C2 53.628 14.773 47.307 0.006a

C3 49.229 13.562 60.868 0.370
C4 39.000 10.744 71.612 0.955
C5 31.291 8.620 80.232 0.452
C6 28.931 7.970 88.202 0.718
C7 19.424 5.351 93.553 0.278
C8 13.631 3.755 97.308 0.712
C9 9.770 2.692 100.000 0.829

a Significant by the Mann–Whitney U-test.
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sed in CRC patients and in negative for decreased volumes; pI: experimental
iss-Prot database.

umber of spots that should be localised and matched through
els is minimal. Therefore, in order to reduce the number of
ariables (spot relative volumes) that could be used as a differ-
ntial pattern between healthy individuals and CRC patients, we
ooked for the spots with the highest loadings (contributions or
orrelations) to the significant factor found before (i.e. PC2).

Studying the factor matrix generated by the software dur-
ng the analysis, we selected in the first place those spots with
correlation (either positive or negative) above 0.6 with PC2.
hese data formed a subset containing 45 variables that was re-
nalysed by PCA. Thus, we found seven PCs of which PC1, PC2
nd PC3 explained 80% of the variance. PC1 was significantly
ifferent between groups (P = 0.009), accounted for a 46.5% of
he variability and allowed the graphical discrimination of con-
rol and patient samples (Fig. 3B). When only the spots with
orrelations higher than 0.7 were selected, 16 variables were re-
nalysed; in this case, we found two relevant PCs that explained

5% of the variance contained in the data. In this set, PC1 was
ignificantly different between groups (P = 0.009), explained a
9% of the total variability and permitted the graphical separa-
ion of the groups (Fig. 3C).



A.M. Rodrı́guez-Piñeiro et al. / J. Chromatogr. B 849 (2007) 251–260 257

Fig. 3. Representation of the main principal components found after PCA of: (A) the 363 spots matched through all samples; (B) the spots with contributions above
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.6 in the 363-spot analysis; (C) the spots with contributions above 0.7 in the 36
n B and C the samples are clustered in relation to PC1.

Therefore, we were able to look for a reduced set of vari-
bles (spots) that could aid in the separation of the samples in
heir true group of origin, and improved the explanation of the
ariability contained in those groups. To corroborate if the pro-
ein pattern defined in 2-D maps by either set of spots could
e considered as a tool to classify a blind sample after 2-DE
rocessing, we performed LDA on both datasets (the 45 spots
ith loadings over 0.6 and the 16 spots with loadings over 0.7
n the PC2 of the 363-spot PCA). This analysis showed 100%
orrect classification of the original cases for both sets. How-
ver, after leave-one-out cross-validation we found a 30% and
0% of mismatches for the 45-spot and the 16-spot datasets,
espectively. Therefore both clusters of spots were disregarded
s clinically useful since results depended on the samples anal-
sed. These results confirm the necessity of combining differ-
nt statistical methodologies to assess the findings after data
valuation and the advantages of performing cross-validation
ests.

Despite the negative results obtained in this particular case,
his approach should be taken into consideration when planning

o classify unknown samples on the basis of their proteome,
ince reducing the number of spots during the matching process
educes the occurrence of operator-derived errors.

able 3
lassification results obtained after linear discriminant analysis of the 363 spots
atched through all the samples

Group Predicted group membership Total

Control Patient

riginal and cross-validation

ount
Controls 5 0 5
Patients 0 5 5

Controls 100.0 0.0 100.0
Patients 0.0 100.0 100.0

he same results were found after cross-validation.
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t analysis. Notice that the separation of the groups is given by PC2 in A, while

.5. Multivariate analysis of the significantly altered spots
ound by univariate statistics

In the previous examples, multivariate data analysis was ori-
nted to the assessment of the utility of the 2-D protein pattern
s a tool to discriminate different types of samples regarding a
isease condition.

Another approach that should be considered is the applica-
ion of multivariate analyses on 2-D data to select the precise
pots that would be the better markers before entering valida-
ion trials. As shown in a previous section, univariate methods
llowed the detection of 28 spots that were significantly altered
n the samples when individually tested. However, multivari-
te techniques allow clustering the differences given by each of
hose spots in PCs, and therefore would theoretically aid in the
election of the spots which could perform better in the clini-
al separation of the samples. Furthermore, it should be noticed
hat using univariate methods a number of proteins could appear
ltered due to chance. For instance, considering the 363 spots
atched and setting a 95%-significance level, up to 18 of the 28

pots detected could not be truly altered.
When the 28 spots detected by univariate analysis were

xplored by PCA, the total variability of these spots was
xplained by nine PCs, the first three showing about a 78% of
umulative variance. This percentage shows how the separation
chieved with the 28 spots was better than that obtained with the
63 spots (see Table 2, PC1 to PC3 accounted for 61% of cumu-
ative variance), although similar to the separation given by the
wo subsets of proteins analysed above (see Section 3.4, 80% and
5% of variance explained by PC1 to PC3, respectively). Simi-
arly to the PCA of those subsets, PC1 was significantly different
P = 0.008) between the control and patient groups. However, it
ould be graphically assessed (Fig. 4A and B) that the separation

f the samples was neater in this analysis, reflecting that those
pots included in the first PCs were altogether more relevant to
he discrimination of the disease state. Noticeably, the distribu-
ion of the scores for the patient group seemed to display a high
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ig. 4. Representation of the main principal components found after PCA of th
B) 3-D plot of PC1, PC2 and PC3.

egree of homogeneity among tumour samples, as it was shown
efore by other authors in CRC and other cancers [8,22].

On the other hand, this set of variables was also challenged
y LDA, finding that the group of 28 spots selected by uni-
ariate methods was able to correctly discriminate 100% of
he samples tested, and this was corroborated through cross-
alidation. Therefore, the 28 spots together would present
00% specificity and 100% sensitivity if analysed from 2-D
els.

.6. Searching for the best markers candidates among the
ltered spots

In the search for protein alterations with clinical utility in the
iagnosis of a certain disease, the implementation of a panel of
iomarkers requires a previous validation with specific assays
ncluding a high number of control and case samples, samples
f related diseases, etc. [6]. Therefore, assaying all those sam-
les for a large number of proteins (any of the successful sets
ested in this study) could imply an elevated cost and extended
ime.

Therefore, we followed the same strategy described before to
educe the number of spots included in the search for a discrim-
nant 2-D protein pattern, trying to select a subset of proteins
hat could yield a better separation of the samples. Hence, we
ought for spots with contributions above 0.6, 0.7, 0.8 and 0.9
n the first factor (PC1) of the 28-spot PCA. Applying a new
CA on those sets of spots, the separation and explanation of the
ariance could not be improved (data not shown) with regard to
he results obtained with the 28 spots.

When the subsets chosen on the basis of the loadings on
C1 were tested by LDA, we found that they consistently

isclassified at least one donor sample, although the patients
ere correctly discriminated by the subsets of spots with load-

ngs above 0.6 and 0.7. Eventually they were regarded as
on-useful for clinical management, due to a low specificity

m
t
f
a

pots significantly altered by univariate statistics. (A) 2-D plot of PC1 and PC2;

f the test notwithstanding a high sensitivity for the CRC
ondition.

.7. Searching for the best markers candidates among the
dentified spots

When planning how to reduce the set of proteins for valida-
ion tests, it is reasonable to try to select candidates among the
lready identified spots. Hence, we applied multivariate anal-
ses on the 13 spots identified by MS after the classical 2-D
nivariate analysis.

PCA determined that PC1 to PC3 obtained from these 13
pots accounted for 87% of the total variance (almost 10% more
han the same PCs for the 28 significant spots) and allowed

graphical separation of the samples as good as in that test
Fig. 5A and B). Furthermore, an advantage of working with
nown proteins is that the researcher is able to remove from
he analysis those proteins that have been related to common
rocesses not specifically related to the disease studied. In this
ork, eliminating the spots identified as haptoglobins (Swiss-
rot accession number P00738) and immunoglobulin chains
heavy chain: P99006; light chain: P99007), widely known to
e altered during acute phase and inflammation, we achieved a
6% cumulative variance and a similar graphical separation of
he groups (Fig. 5C and D).

LDA showed that the 13 spots could classify correctly
00% of the original cases, although cross-validation showed
40% failure-rate. Surprisingly, the spots identified as clusterin

P10909), complement factor I (P05156) and �-2-glycoprotein
(P02749) (that is, the 13 spots minus haptoglobins and

mmunoglobulins) correctly classified 100% of the original
ases and 90% of the samples during cross-validation. Further-

ore, when the variables were introduced in a step-by-step mode

o allow the automatic refinement of the calculations, the set per-
ormed well (100% true assignments) both for the original cases
nd the cross-validated samples.
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s clusterin, complement factor I and �-2-glycoprotein I (C, D). In C and D, tw

Hence, those proteins (clusterin, complement factor I and �-
-glycoprotein I) could be regarded by themselves as a potential
anel of biomarkers for CRC worth of further extensive testing.
nterestingly, �-2-glycoprotein I has been suggested to bind to
amaged cells [23], and both clusterin and complement factor I
ave been already related to carcinogenesis [24,25], supporting
he interest of their validation.

. Conclusions

To conclude, in this work we challenged a complex dataset
btained from a 2-D comparison of serum N-glycoproteins from
ealthy individuals and CRC patients, taking advantage both
f univariate and multivariate approaches. Regarding the lat-
er, we have found that both PCA and LDA are useful both to
orroborate the utility of the whole proteome displayed by the
-D maps as a tool to classify unknown samples and to verify
he accuracy of the classification model. Moreover, these statis-

ics offer parameters that allow the reduction of the number
f spots considered, facilitating the management of the infor-
ation contained in the maps. On the other hand, PCA and
DA were successfully applied to a group of spots previously

s
t
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c

PCA on the 13 spots identified by MS (A, B), and PCA on the spots identified
ent samples are superimposed.

etected as differentially expressed by way of univariate statis-
ics, assessing the utility of the classification model provided
y the whole group and by reduced subgroups of proteins.
inally, both methods were applied to the spots identified by
S, finding a combination of proteins with potential utility as
arkers for the disease studied. In any case, combination of

nivariate and multivariate techniques maximises the informa-
ion obtained and improves the detection of true and relevant
roteomic changes.

Up to date, the use of multivariate methods has been pro-
osed by some researchers. However, those applications usu-
lly involved the knowledge of complex mathematical formu-
ae or programming. The main advantage of the approach we
mployed is that both the PCA and the LDA can be simply
pplied through user-friendly statistical software as the SPSS
sed here, and therefore the researcher just needs to learn how
o input the data and how to interpret the output of the pro-
ramme. Notwithstanding, nowadays most of the 2-D dedicated

oftware incorporates simple statistics as the Student T test, and
hus it is possible that they could include this type of multivari-
te analysis, facilitating the extraction of useful trends from the
omplex datasets generated in 2-DE experiments.
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